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The problem of determining- nontrivial equilibrium forms of thin elastic plates 
in a stream of perfect fluid is considered. The scheme of stream. flow with an 
infinite cavity (the Kfrkhoff scheme) is used for determining hydrodynamic for- 
tea acting on a curved plate. The ensuing boundary value probiem is anaiyz- 
ed, and it is shown that the operator of the probltm is self-conjugate and posit- 
ive definite. An analytic solution of the outer hydrodynamic problem is deriv- 
ed arid the f&id reaction on the plate determined. 

The determination of equilibrium curved forms reduces to solving an integro-diff- 
erential equation in eigenvalues. The ii at eigenvalue (the critical velocity of the 
oncoming stream) and the related eigenfunction (the curved plate equiiibrium form) 
are obtained by the iteration method. The ep~~~a~on problem of determining the 
distribution of the plate thickness for whit% the nontrivial equilibrium forms obtains 
at the maximum oncoming stream velocity is then formulated. Optimality conditions 
am established. The optimization problem is solved for a thin three-layer panel, and 
it is shown that in this case the optimality condition is not only necessary but, also, 
sufficient, 

Problems of optimization for elastic plates interacting with a perfect fluid were 
previously considered in El, 23. 

I,. Statement of the problem and basic equations. 
Let us conaider the problem of perfect fluid flow past an elastic plate OA (Fig. U. 
In the undefozmed state the plate lies in a plane normal to the Y -axis titfr its lead- 
ing edge (point A ’ in Fig, 11 free and its rear edge (I = 0, y = 0) fixed to an 
abso&t&y rigid semi-infinite plate OB located on the semiaxis z > 0 at Y = 0. 
To investigate the nontrivial equilibrium positions of the 

_---- ----- 

- 

Fig, 1 

plate we ccmider besides its iaitial uadiaturbed form (g = 0) some equ;ilibrium cur- 
ved form OA . De&toting by u (3) (U < Z) the piate deflections, we write the 
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equation of plate equi~b~um and the boundary conditions as 

(D&&z =o (--t<s\<O) 

U (0) = us (@) = 0, (DU,),=_r = [(DU,),J,=-r = 0 

(1.11 

( 1. 2) 

Boundary conditions at points x = 0 and x = - t define the rigid attach- 

ment of the plate rear edge and the absence of bending moments and shear forces at 

its free edge, respectively. 
The cylindrical rigidity denoted by D is related to the [plate] thickness distribut- 

ion h (5) by formula D = K,h”, where K,,, = con&. Parameter m and 

constant K, are determined by the plate construction and by constants of its material 

(Young’s modulus and Poisson’s ratio). For m = 3 and m = 1 this formula corr- 

esponds to solid and three-layer plates, respectively. In the latter case ,rbL is under- 

stood to be the thickness of the outer reinforcing layers. The fluid reaction on the 

plate is denoted by Q , 
To determine the reaction of the fluid we consider the hydrodynamic problem of 

a perfect fluid flow around the contour QA, assuming that the fluid stream flowing 

past the bent plate becomes separated from the plate and an infinite cavity BOAK 
is formed. We denote the fluid velocity by u (x, y). At infinity the velocity vector 
is parallel to the z-axis and its modulus is V,. It is assumed that the fluid motion 

is irrotational and its potential rp (x, y) (V = ‘?rp) satisfies the Laplace equation. 

We represent the potential rp in the form cp = V,X $ @ 

Function a’, as well as ip, is harmonic and vanishes at infinity. 

ACT, = 0, (@)cm = 0 (1.3) 

Function @ must satisfy specific boundary conditions at the plate surface and at 

fluid free surface (the cavity boundary). After linearization the boundary conditions 

are related to the x-axis, neglecting terms o (H) and o (U), where H = max, 
h and U = max, ZL. We draw a zero thickness cut along the semi-infinite interval 

;2:>- t of the I -axis, The upper and lower boundaries of this cut, as well as 

the functions along the boundaries, are denoted by plus and minus indices, respectively. 

After linearization we relate to surface s- the condition of plate surface impermeab- 
ility to fluid. We obtain 

(@,J-- = Vc&X (--I\<X<U), (@>,)- = 0 (00) (1.4) 

It is assumed here that the characteristic thickness of the plate is c~~derably 
smaller than its characteristic deflection, The kinematic condition at the free surface 

related to surface A!?+ is of the similar form 

@+J* = VcQfx (1. 5) 

The dynamic condition (Vqj2 = con& which follows from the Bernoulli integr- 
al and implies the constancy of pressure along the cavity boundary assumes the form 

(@J’ = 0 (X > - I) (1.6) 

For a given distribution of deflections u = u (x) the boundary value problem 
(1.3), ( 1.4), (1.6) is closed and can be solved for function @ (x, y). Having determi- 

ned function @ (5, y) , we obtain for the form of the cavity the following quadrature 

(as implied by (1.5)): 
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f = u (- b) + + s (q/ (t, w+ La 
co 

--I 

The fluid reaction distribution on the plate is determined using 
ral. After linearization and elementary transformations we obtain 

Q = p- - p+ = - pu, (a),)- 

(1.V 

the Bernoulli integ- 

(1.9) 

where P is the fluid density. In the plate defkction equation (1.1) and boundary con- 
ditions (1.2) we mpmat 0 in terms of h. We then substitute for Q its express- 
im from (1.9) intO Eq. (1.1) and pa&s in the obtained equation and formulas (1.2) - 
(2) ~,dimentfaklcp vadablu: U’ = ~11, X' = x11, y' = y/l, CD' = CD/&J_, 

= WS, where S is the cross section area of the clartic plate OA (the 
pdmct are henceforth omitted). In this way we obtain for functions u and @ the 
closed boundary value problem 

(~%V.4, - - h (QJ, h = pu2,S-*K~z”f3 (- I< x \< 0) (1.9) 

u - u 5 = 0 (x = O), JPU,, = (h”u,), = 0 (z = - 1) 

Aa = 0, (0)cx = 0 (1.10) 

@,I+ = 0 (- 1< 5) 

P,)- = & (- 1 < 2 < O), (q/)- = 0 (x > 0) 

The hydrodynamic problem (1.10) for the potential @ and problem (1.9) of bend- 

ing are interrelated, since the bamdary conditions for Cb contain the derivative of the 
plate deflection distrkbutlon, and the derivative of potential 0 appears in the equat- 
ion of plate deflection. 

Problem (1.9), (1.10) is homogeneous, hence it admita the tdvial solution u = 
9 = 0. The problem of finding nontrivial solution8 of this problem leads to a prob- 

lem in eigenvties, in which h repmeents the dgenvalue. We seek the fir& eigen- 
value I. which corrapmds to cdtical values of parameters p, u,, I, S, and K,. 

The existence of nontrivial solutions in system (1.9) may be taken as an indtcation 
of instability of the undeformed plate position. 

2, Analysis of the boundary value problem. Sin; 
problem (1.10) for potential <D is linear with respect to U and independent of 7 
the expression for (a,)- in the right-hand side of 4. (1.9) can be written a~ 

(@,._ = Lu 

where L it somelinear operator that is self-conjugate and positive. We shall prove 

that. 
tit u1 (0) and us (I) be two arbitrary functions that are twice differentiable on 

segments [--1,O], andlet (0’ and Q o be solutions of the boundary value problem 

(1.10) for u = u1 and U= ~2, respectively. We complement the definttton of 
functiont u1 and 3 on segment [0, 61, where S is some positive number, by sett- 
ing ur (z) = us (2) s 0. We obtain 
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0 b b 

s U1LU2liZ = 
5 

u’Lu2 dz = - 
s 

u (@,,2)- dz (2.1) 
-1 -1 -1 

Applying to the last integral in (2.1) the formula of integration by parts, taking 
into account that at x = -1 (aJ,')+ = (UP)-= 0 , and using the boundary condit- 

ions for potentials a1 and Qs , we obtain 

I A’ r.99 
0 b 

s 
U’Lus dx = 

s 
uxr (@q-d3 = 

-1 -1 
b 

s (mu1 j- (@)- dx = 

-1 

b 

s 
[(co,q-(@)- - eDy')+(@a)+]dz 

-1 

-0.5 

Fig. 2 

X the inward normal to the boundary Sb = 

S,+ i- Sb- + ‘, (see Fig. 2). In this 

notation 

0 

S dwdx = - S &.Dl ~0%” s aa1 an @a5 (2. a 

-1 sb zb 

We denote by S,+ and Sb- segments 
of the cut boundaries for which - 1< x 

<(s;by ‘, the circle of radius 6 
with center at point (-1, 0), and by n 

Applying now Green’s first formula to the first integral in the right-hand side of 
(2.2), we obtain 

n ; s . 
ulLGdx= - @‘rdo + s a@ s a@1 

r@ds 

-1 sb =b 

Taking into consideration the boundary conditions for potentials a1 and 02, 

we rewrite the last equality as 

0 b 
. 

s S SC &Pl a@ 
u’L1CJ dx = usi (uq- ax + an@-YgyP 

-1 -1 zb 

Integrating by parts and passing to the limit 6 - 00, we obtain the formula 

0 n 

r 
U’Lilsdx = r usL7xr dx (2.3) 

11 41 

Positiveness of operator L is proved in a similar manner. In formula (2. 2) we 
set u1 s us and @’ E @. Applying Green’s second formula, we obtain 

n 

s U’LU dx.7 

-1 

1 (VrDr)zdt + ‘1 g W d5 

vb =b 

(2.4) 
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Region V,, is bounded by surface S,. With 6 in formula (2.4) approaching 
infinity we have the inequality 

0 

s 
U’LU dz = 

s 
(V@r)a dt > 0 (2.5) 

-1 V 

The second integral in (2.5) is taken over region P which represents the exterior 
of the semi-infinite cut -1 < 5, y = 0. 

Since the positiveness and self-conjugacy of the left-hand side of Eq. ( 1.9) is 
known, the boundary value problem in eigenvalues (1.9), (1.10) is self- conjugate and 
positive definite, which proves that the eigenvalues are positive and real. 

3. Determination of fluid reaction and derivat- 
ion of the integro-differential equation for plate 
d e f 1 e c t i o II s, The effect of fluid [flow] on bending of the plate is taken into 
account by the expression in the right-hand side of Eq. (1.9). To determine the der- 
ivative of potential (CD,)- we consider the external hydrodynamic problem (1. lo), 
introducing in the analysis the auxilliary function 

W=cD+iY (3.1) 

of argument z = z + iy (i is the imaginary unit). Function W is assumed analyt- 
ic in the plane with the semi-infinite cut - 1 < z, y = 0. For the derivative 

t of function W (2) we have the expression ‘W’ = cDt + iYx. Using the Cauchy 
- Piemann equations and boundary conditions we obtain 

(3.2) 

from which with the first of boundary conditions (1.10) follows that for - ‘l < x , 

Re (W’)” = 0, Im (W’)- = - ig (3.3) 

Thus for the determination of derivative W’ of the analytic function W we ob- 
tain from (3.1) the mixed boundary value problem (3.3) whose solution obtained by 
Sherman is of the form 

W’=- I \ ? (t + l)‘hltdt + 1 f (t + 1pup 

2nt (z + I)“& 1, t - z s 2XL(Z + I)*‘* _-l r - z 
(3.4) 

Passing in expresdons in the right-hand side of (3.4) to the limit z = 2 + iy + 
z - i0 (0 > y) and using the sokhotskii - Plemel formula, we obtain 

v%)- = * 
4 (1 + tpqt 
\ 

9 (1 + tpup 
(3. 5) 

2n (1 + z)“* _-l t - 5 + I I 2n. (1 + z)‘/* _-l t--s 

where the integrals are to be understood according to the Cauchy meaning of the prin- 
cipal value. In what fellows we also use for the unknown quantity the formula 

0 

(a&)- = - s ’ K (t, x) u,dl 
-1 

(3.6) 
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The obtained formula for the fluid reaction is substituted into the equilibrium eq- 
uation (1.9) which, then, yields for the distribution of plate deflections the homogen-_ 

eous integro-differential equation 

(3.7) 

Solution of the boundary value problem for Eq. (3.7) with conditions (1.9) was 

obtained numerically for a constant distribution of plate thickness \h = 1) using 

the method set forth in [31. ‘lhe first eigenvalue thus determined is 3L = 5.132. The 

related distribution of deflections is shown in Fig, 2 by the solid line, 
An an illustration we consider a steel piate 1 m wide and 1 cm thick. The 

critical velocity of motion of such plate in water is 

v.=+ = ~/ES+/ 12pP N 10 m/ s 

Below we consider plates of variable thickness and determine the thickness dittrib- 

ution for which the first eigenvalue reaches its maximum, 

4. T h e p r o b 1 e m o f o p t i m i z a t i o n. Taking into account that 

the boundary value problem (3.7) with conditions from (1.9) is positive definite and 

self-conjugate, the first eigenvalue h. is determined using the first variational princi- 

ple of Rayleigh [3] 

h = min, J (h, u) (4.1) 

J(h,u) = (i hY&&) / i 5 K(t,X)U(X)uu, (t)dtd.r 
-1 -1-l 

In this case the minimum is sought in the class of functions that are twice contin- 

uously differentiable and satisfy the boundary conditions in (1.9) formulated for 2 = 

0. The other two boundary conditions in (1.9) are inherent to functional J and, 

thus, automatically satisfied. 

Consider the following problem of optimization: find among all continuous funct- 

ions h (x) that satisfy the isoperimetric conditions of constancy of the plate section 
0 

s h(x) ax = 1 (4.2) 
-- 1 

a function which maximizes the first eigenvalue h, i. e. 

h* = ma& min, J (h, u) (4.3) 

The necessary condition of optimality is of the form 

hm-r& = c” (4.4) 

where c is the constant Lagrange multiplier which corresponds to the isoperimetric 
condition (4.2). 

If the dependence of bending rigidity D on thickness h is linear (in = 1) 
condition (4.4) is evidently independent of function h . This makes possible the 
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analytical solutiao of the optimization problem (4.3). In fact, from Eq. (-4.4) with 
boundary conditfons (1.9) we find that for x = -0 the distdbulion of deflections 
U* (x) of the optimal plate is 

U* = cl?!2 (4. 5) 

Equation (3.7) with baby conditions (1.9) for~la~d for 5 = --1 and allow- 
ance for formula (4.5) for u* yield the following Cauchy problem for the second ord- 
er ordinary differential equation: 

0 

& I= hb s K (t, t) t dt, h”(--1)=~*(-i)= 0 (4.6) 
-1 

The optimal thickness distribution obtained by integrating (4.6) is of the form 

h” = 3.* f 5 fx-q)K(t,q)dtdq (4.7) 

3c -1 

~~g~~~~cc~~ti~~4.2) forthecigenvalue h*weobtain 

000 

A* =5 (jl i -s, (J: - q) K U, q) t dt dq dx)-’ = 7.567 
(4.6) 

The gain obtained by ~thickn~~$~ optimiaation over a constant thickness plate is 
47.4%. The optimal thickness distribution h* (x) is &awn in Fig. 2 by the dash 
line, 

Let us prove that in the case of m = 1 fom (4.4) ~reser&ts not only the 
neetrrary En&t, also, the sufficient condition of optimality. To do this we estimate 
the rest h* - h, with I*“, u*, and h* repreaenttng the solution of the boundary 
value problem (3. ‘7). (I.. 9), (4.4). and a and U are the cigenvalue and the eigen- 
function of p&km (3.7), (1.9) that relate to some arbitrslry thicttness caution 
h (x1. It is alao assumed that h* and h SM.@ tlw isuperimetric condition (4. ‘21. 

We have 

A,” - h, = min, J (h*, u) - min,, J (h, U) > J (h*, u*> - f (h, u*) = 
0 0 

+ j(h*-h)(us*)2dx, x= 5 5 K (t, x) ut* (t) u* (x) dxdt 
-1 -1-I 

but by the optimality condition (4.4) (U,*)’ = c2, hence 

0 

h* --h >$- \ (h*-h)d.-c * 
(4.9) 

Since fwctions h* and h sati@ the isoptrimetric condition (4.2), the right- 
handsided inequality (4.9) is aero. Hence k* > h and iu the case of m = 1 

(4.4) fs t&e rufilcfent caadftfon of the ovu-all ~~WUII, and fonrrulpa (4.7) sod 
(4.8) yield the unite soluffou of the problem of optimality. 
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